NEW STRATEGIES FOR THE TREATMENT OF TUBERCULOSIS

Victoria Bîrluțiu¹, Mirela Mitrea²

¹ Infectious Diseases Clinic Sibiu
² Resident physician Pulmonary Clinic Sibiu

Abstract. The treatment of Tuberculosis may be associated with an emergence of mycobacterial resistance through chromosomal alterations, but also through a poor administration of treatment, leading to the emergence of multi-drug-resistant strains MDR-TB or extensively drug-resistant, XDR-TB, responsible for over one million illnesses. We aim at presenting current WHO recommendations for patients in treatment failure as well as information regarding the new compounds: TMC-207, OPC-67683, PA-824, LL-3858 and SQ-109, currently being evaluated in the treatment of tuberculosis.

Keywords: Mycobacterium tuberculosis, multi-drug-resistant strains

Tuberculosis – treatment – resistance

The emergence of resistance of Mycobacterium tuberculosis may be the result of spontaneous chromosome alteration, but most often it is attributed to the week pattern of administration of the tuberculosis medication, with the emergence of MDR-TB strains (multi-drug-resistant TB), resistant to two of the major tuberculostatics, INH isoniazid and RIF rifampicin, or XDR-TB strains (extensively drug-resistant), additional resistance to fluoroquinolones and one of the aminoglycosides used in tuberculosis treatment: kanamycin KM, amikacin AK, capreomycin CM, responsible since 2006 for important therapeutic failures [1,2].

Worldwide, WHO estimates the existence of a number of approximately 1 million illnesses with MDR-TB, respectively 40 000 illnesses with XDR-TB [3,4], influenced by poor administration of tuberculosis treatment, by sub-optimal doses and not least by the widespread use of fluoroquinolone therapy in respiratory, urinary infections, allowing the escalation of mycobacterial resistance to fluoroquinolones.

The presence of any of the following risk factors: treatment interruption, contact with persons known for treatment failure, alcoholism, poor socioeconomic conditions, migration of population from areas known with multi-resistance, requires the investigation of bacillary susceptibility through molecular tests of resistance.

Since 2008, WHO recommends a wider range of chemotherapy agents with anti-tuberculosis action [6,7], classified into 5 groups in relation to their efficiency (see table I), with warnings regarding the possible secondary effects correlated with their administration.
<table>
<thead>
<tr>
<th>The active substance</th>
<th>Ordinary</th>
<th>Side effects</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Occasional</td>
<td></td>
</tr>
</tbody>
</table>

Category A: first-line drugs

<table>
<thead>
<tr>
<th>Isoniazid</th>
<th>Medicamentous hepatitis</th>
<th>Skin hypersensitivity</th>
<th>Peripheral neuropathy</th>
<th>Vertigo</th>
<th>Seizures</th>
<th>Optic neuritis</th>
<th>Hemolytic anemia</th>
<th>Aplastic anemia</th>
<th>Lupoid anemia</th>
<th>Arthralgia</th>
<th>Gynaecomastia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampicin</td>
<td>Medicamentous hepatitis</td>
<td>Skin hypersensitivity</td>
<td>Gastrointestinal disorders</td>
<td>Vertigo</td>
<td>Seizures</td>
<td>Optic neuritis</td>
<td>Hemolytic anemia</td>
<td>Aplastic anemia</td>
<td>Lupoid anemia</td>
<td>Arthralgia</td>
<td>Gynaecomastia</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenic purpura</td>
<td>Febrile reactions</td>
<td>Flu-like syndrome</td>
<td>Dyspnoea</td>
<td>Shock</td>
<td>Hemolytic anemia</td>
<td>Acute renal failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethambutol</td>
<td>Retrobulbar neuritis</td>
<td>Arthralgia</td>
<td>Medicamentous hepatitis</td>
<td>Skin reactions</td>
<td>Peripheral neuropathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anorexia</td>
<td>Nausea</td>
<td>Flushing</td>
<td>Hepatitis</td>
<td>Vomiting</td>
<td>Arthralgia</td>
<td>Gout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>Flushing</td>
<td>Photosensitivity</td>
<td>Skin reactions</td>
<td>Sideroblastic anemia</td>
<td>Gout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Category B: parenteral administration agents

Streptomycin	Dizziness	Paresthesia	Tinnitus	Vertigo	Ataxi	Deafness	Renal affectation	Aplastic anemia
Amikacin	Ototoxicity	Nephrotoxicity	Clinically evident renal failure	Hypokalemia	Hypocalcemia	Hypomagnesemia		
Kanamycin								
Capreomycin								

Category C: fluoroquinolones

Ofloxacin	Gastrointestinal disorders	Insomnia	Dysmicrobism	Anxiety	Dizziness	Headache	Tremor	Seizures	Hemolytic anemia	Tendonitis / tendon rupture	Arthropathies	Colitis
Levofoxacin	Similar to Ofloxacin, more reduced effects on the CNS (Moxifloxacin)											
Moxifloxacin	but potentially less cardiotoxic											

Category D: bacteriostatic second-line agents

| Ethionamide | Metallic taste | Hepatitis | Peripheral neuropathy | Seizures | Impotence | Menstrual disorders | Gynaecomastia | Hypothyroidism | Hypoglycemia | Alopecia |
| Prothionamide | Hyper-salivation | Gastrointestinal disorders | Headache | | | | | | | | |
Ethambutol and pyrazinamide will be used in the MDR-TB therapy, if the resistance testing confirms the continued sensitivity to these drugs; supplementation with kanamycin or amikacin, from the second line, if there is resistance to streptomycin.

Regarding the administration of old fluoroquinolones, such as ciprofloxacin, the increase of resistance is envisaged, as well as the prolonged time of negativation of sputum cultures, currently being preferred the moxifloxacin and the levofloxacin, active against some strains resistant to ofloxacin.

The use of linezolid, initially 600 mg/day, then 300 mg/day, demonstrates its effectiveness on MDR-TB, XDR-TB, and the reduction of doses contributes to lowering the medulotoxic risk of linezolid, but with no long-term influence on neurotoxicity.

A different product from the oxazolidinone group, PNU-100480, has recently made its way into therapeutic practice, significantly increasing the bactericidal action of regimens containing first
line drugs and moxifloxacin, with the possibility of reducing the duration of therapy for persons with TB susceptible to PNU-100480.

Amoxicillin-clavulanate also demonstrates its early bactericidal efficiency in pulmonary tuberculosis with sensitive strains, respectively the inhibitory action on MDR-TB.

For the MDR-TB treatment, second line medication is used, respectively the injectable medication, streptomycin or kanamycin, amikacin or capreomycin associated with fluoroquinolones, ethambutol, ethionamide or prothionamide for strains resistant to INH and RFP. Cycloserine is associated with para-aminosalicylic acid for strains resistant to ethambutol, pyrazinamide, to aminoglycosides, fluoroquinolones, ethionamide or prothionamide. The minimum recommended duration in these cases is 18 months or 18 months from the negativation of cultures for BK.

In particular cases - patients with silicosis, diabetes mellitus, extensive radiological image, slow conversion rhythm of sputum, resistance of isolated strain, we encourage the extension of therapy to 24 months.

In XDR-TB strains therapy, we use medication in Group E that is amoxicillin-clavulanate, clofazimine, imipenem, linezolid and clarithromycin, combined, where suitable, with surgery.

In addition to the presented therapeutic regimens, since October 2008, the results of over 60 studies have been evaluated; for example phase III clinical studies regarding the effectiveness of moxifloxacin and gatifloxacin in the treatment of tuberculosis with drug-susceptible germs, but also phase II studies using new compounds: **tmc-207**, **OPC-67683** and **PA-824**, compounds that are in preclinical/clinical stages of research, **LL-3858** and **SQ-109** effective in susceptible but also multidrug-resistant strains.

TMC-207 is a new product, diarylquinoline, with action on the ATP - synthase BK, acting on mycobacteria being in the multiplication phase or hibernating. Its half-life is of approximately 24 hours, it is metabolized on the CYP3A4 level, the plasma being halved in combination with rifampicin. It acts synergistically with pyrazinamide, with bacteriological sterilization at 2 months after beginning therapy, and in combination pyrazinamide-rifampicin-TMC-207, with sterilization in a month after starting the treatment.

Administration in combination with amikacin, ethionamide, moxifloxacin and pyrazinamide demonstrate its superiority compared with the combination of second-line treatment drugs.

OPC-67683 is a nitroimidazole, extremely potent in vivo and in vitro, compared to BK with maintained sensitivity or MDR, with inhibitory action on the cell wall as the PA-824, 20 times more active than the latter and synergistic to first line medication. Its half-life is of 7-8 hours and it is used in doses of 100-200 mg/day.

PA-824 is part of a new class of antibacterial agents, respectively nitroimidazopiran. It works through inhibition of protein synthesis and cell wall lipid biosynthesis, it does not significantly interact with the cytochrome P450, it is not mutagenic. It is bactericidal, comparable to the INH action within the first 8 weeks, highly potent in sputum sterilization, comparable to the INH-RFP association. Its action mechanism on the non-replicative bacilli has recently been ascertained: it acts by releasing intracellular nitric oxide.

The combination of moxifloxacin and pyrazinamide is expected to significantly reduce the duration of therapy in MDR-TB cases. PA-824 binds to serum proteins in percentage of 94% so that the administrated doses may be associated to important side effects. Due to this disadvantage, the testing of PA-824 aerosols administering has been started.

LL-3858 is a pyrrole compound, active against strains which are sensitive and resistant to BK, the action mechanism remains unknown, synergistic in vitro with rifampicin, more active compared with INH, in mono-therapy.

SQ-109 is a diamine, active on sensitive and resistant strains by inhibition of cell wall synthesis, synergistic with INH and RFP, additive to streptomycin, potential replacement of ethambutol, highly potent in combination with IMC-207. It is administered in doses of 300 mg, with a half-life of 61 hours.

Other agents in tuberculosis therapy are also under evaluation: nitrofurantoin, meropenem-clavulanate, pleuromutilin, malatsynthetase inhibitors.

The general opinion is to associate surgery to drug therapy, classic or video-assisted thoracoscopy, collapse-therapy – thoracoplasty, filling or artificial pneumothorax that limits the risk of dissemination.

Immunotherapy is a complementary therapeutic method, IFN-γ, IFN-α, IL-2, IL-12, the Mycobacterium vaccae vaccination, and the administration
of mono-and polyclonal antibodies being currently evaluated.

Other studies are focused on intracellular destruction of M. tuberculosis through the phenomenon of autophagy, homeostatic intracellular mechanism of clearance of cellular organites, of cellular proteins, increased by administering Rapamycin.

MDR TB therapy is far from being solved, the costs being 100 times greater than the costs for atypical mycobacterial infections, while the chances of healing are still low. Among the presented therapeutic products, 8-methoxy-fluoroquinolones remain the most accessible option, given that their use should be restricted to the therapy of pneumonia or community urinary infections.

References

